Tag Archives: with screw

China factory Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

Product Description

Cast Iron Elastic Pump Shaft Fcl 90~630 Reduced Transmission Rubber Screw Coupling with flange straight bore

Product Description

 

 

FCL coupling is widely used for its compact designing,easy installation,convenientmaintenance,small size and light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o30′–1o30′

 

Related products:

Production workshop:

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China factory Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

pin coupling

Are There Any Safety Considerations When Using Pin Couplings in Rotating Machinery?

Yes, there are several safety considerations to keep in mind when using pin couplings in rotating machinery. These considerations are essential to ensure the safe and efficient operation of the equipment and to protect personnel working in the vicinity. Here are some key safety points to consider:

  • Guarding: When installing pin couplings, it is crucial to provide adequate guarding around the coupling area. This helps prevent accidental contact with the rotating coupling components, such as pins and hubs, which could cause severe injuries.
  • Maintenance and Inspection: Regular maintenance and inspection of the pin coupling are vital to identify any signs of wear, misalignment, or damage. Any worn or damaged components should be replaced immediately to prevent coupling failure, which could lead to sudden equipment shutdown or safety hazards.
  • Proper Alignment: Ensuring precise alignment of the connected shafts is crucial to the safe operation of the pin coupling. Misalignment can lead to increased stresses and premature wear on the coupling components, resulting in potential failures.
  • Torque and Speed Limits: Adhering to the manufacturer’s recommended torque and speed limits for the pin coupling is essential for its safe operation. Exceeding these limits can lead to overloading and failure of the coupling.
  • Environmental Considerations: Take into account the operating environment when selecting a pin coupling. Extreme temperatures, corrosive atmospheres, or harsh conditions may require special materials or coatings to ensure the coupling’s integrity and prevent premature failure.
  • Training and Awareness: Operators and maintenance personnel should receive proper training on the safe handling, installation, and maintenance of pin couplings. Awareness of potential hazards and safety protocols is crucial for the safe use of rotating machinery.
  • Emergency Shutdown: Install emergency shutdown systems that can quickly stop the rotating machinery in case of any safety concerns or abnormal conditions.
  • Compliance with Regulations: Ensure that the use of pin couplings complies with all relevant safety and industry regulations and standards.

By taking these safety considerations into account and implementing proper safety measures, the use of pin couplings in rotating machinery can be done safely and effectively, mitigating potential risks and ensuring a safe working environment for personnel.

pin coupling

How Does a Pin Coupling Handle Angular, Parallel, and Axial Misalignment?

A pin coupling is designed to handle different types of misalignment, including angular, parallel, and axial misalignment. The unique construction of pin couplings allows them to accommodate these misalignments without compromising the efficiency and performance of the connected equipment.

1. Angular Misalignment: Angular misalignment occurs when the axes of the driving and driven shafts are not parallel but intersect at an angle. Pin couplings can tolerate angular misalignment because of their flexible and floating pin design. The two coupling halves are connected by a series of pins, which can pivot and move within the pin holes. This flexibility allows the coupling to bend slightly, adjusting to the angle of misalignment between the shafts.

2. Parallel Misalignment: Parallel misalignment happens when the axes of the driving and driven shafts are parallel, but they are laterally displaced from each other. Pin couplings can handle parallel misalignment to some extent due to the floating nature of the pins. The pins can move laterally within the pin holes, allowing the coupling to adapt to the offset between the shafts.

3. Axial Misalignment: Axial misalignment occurs when there is a linear displacement along the axis of one shaft concerning the other. While pin couplings primarily focus on handling angular and parallel misalignment, they may offer limited axial misalignment capabilities. The floating pins provide a small degree of axial movement, but excessive axial misalignment is best avoided to prevent additional stresses on the coupling.

It is important to note that while pin couplings can accommodate some degree of misalignment, excessive misalignment should be avoided to prevent premature wear and potential failure of the coupling and connected equipment. Regular inspection and maintenance can help identify and address any misalignment issues, ensuring the optimal performance and longevity of the pin coupling in power transmission applications.

pin coupling

Can Pin Couplings Handle Misalignment Between Shafts?

Yes, pin couplings are designed to accommodate a certain degree of misalignment between shafts in rotating machinery. They are considered flexible couplings, which means they can provide some degree of angular, parallel, and axial misalignment capability.

Pin couplings typically consist of two hubs, each connected to a shaft, and a central sleeve with pins that transmit torque between the hubs. The pins allow for a limited range of movement, which helps to compensate for slight misalignments between the shafts.

The angular misalignment capacity of a pin coupling is achieved through the bending of the pins. When the shafts are misaligned at an angle, the pins on one side of the coupling experience bending while those on the opposite side are in tension. The pins are designed to withstand these bending and tension forces within their elastic limits, ensuring proper functioning and longevity of the coupling.

Similarly, the pins can accommodate parallel misalignment by sliding within the pin holes of the coupling’s central sleeve. This sliding action allows the hubs to move slightly relative to each other, compensating for any offset between the shafts.

However, it is essential to note that pin couplings have limitations in terms of the amount of misalignment they can handle. Excessive misalignment beyond their specified limits can lead to increased wear on the pins and other coupling components, reducing the coupling’s effectiveness and potentially causing premature failure.

While pin couplings are suitable for applications with moderate misalignment requirements, they may not be the best choice for applications with significant misalignment or where precise alignment is critical. In such cases, more flexible couplings like gear or elastomeric couplings may be more appropriate.

Overall, when considering the use of pin couplings, it is essential to carefully evaluate the specific misalignment requirements of the application and select a coupling that can adequately accommodate those misalignments while ensuring reliable and efficient power transmission.

China factory Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore  China factory Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore
editor by CX 2024-05-13

China Good quality Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

Product Description

Cast Iron Elastic Pump Shaft Fcl 90~630 Reduced Transmission Rubber Screw Coupling with flange straight bore

Product Description

 

 

FCL coupling is widely used for its compact designing,easy installation,convenientmaintenance,small size and light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o30′–1o30′

 

Related products:

Production workshop:

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China Good quality Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

pin coupling

Are There Any Safety Considerations When Using Pin Couplings in Rotating Machinery?

Yes, there are several safety considerations to keep in mind when using pin couplings in rotating machinery. These considerations are essential to ensure the safe and efficient operation of the equipment and to protect personnel working in the vicinity. Here are some key safety points to consider:

  • Guarding: When installing pin couplings, it is crucial to provide adequate guarding around the coupling area. This helps prevent accidental contact with the rotating coupling components, such as pins and hubs, which could cause severe injuries.
  • Maintenance and Inspection: Regular maintenance and inspection of the pin coupling are vital to identify any signs of wear, misalignment, or damage. Any worn or damaged components should be replaced immediately to prevent coupling failure, which could lead to sudden equipment shutdown or safety hazards.
  • Proper Alignment: Ensuring precise alignment of the connected shafts is crucial to the safe operation of the pin coupling. Misalignment can lead to increased stresses and premature wear on the coupling components, resulting in potential failures.
  • Torque and Speed Limits: Adhering to the manufacturer’s recommended torque and speed limits for the pin coupling is essential for its safe operation. Exceeding these limits can lead to overloading and failure of the coupling.
  • Environmental Considerations: Take into account the operating environment when selecting a pin coupling. Extreme temperatures, corrosive atmospheres, or harsh conditions may require special materials or coatings to ensure the coupling’s integrity and prevent premature failure.
  • Training and Awareness: Operators and maintenance personnel should receive proper training on the safe handling, installation, and maintenance of pin couplings. Awareness of potential hazards and safety protocols is crucial for the safe use of rotating machinery.
  • Emergency Shutdown: Install emergency shutdown systems that can quickly stop the rotating machinery in case of any safety concerns or abnormal conditions.
  • Compliance with Regulations: Ensure that the use of pin couplings complies with all relevant safety and industry regulations and standards.

By taking these safety considerations into account and implementing proper safety measures, the use of pin couplings in rotating machinery can be done safely and effectively, mitigating potential risks and ensuring a safe working environment for personnel.

pin coupling

Role of Pin Coupling in Reducing Downtime and Maintenance Costs

A pin coupling plays a crucial role in reducing downtime and maintenance costs in various mechanical systems and power transmission applications. Its design and features contribute to improved reliability and ease of maintenance, resulting in enhanced operational efficiency and cost savings. Here’s how pin couplings achieve these benefits:

1. Shock Absorption: Pin couplings are known for their ability to absorb and dampen shocks and vibrations generated during operation. By cushioning the impact of sudden loads or torque spikes, they protect the connected equipment from potential damage, reducing the frequency of unexpected breakdowns and downtime.

2. Misalignment Tolerance: Pin couplings can tolerate a certain degree of misalignment between shafts, such as angular and parallel misalignment. This flexibility allows for easier installation and alignment of equipment, saving time and effort during setup and reducing the need for precise alignment procedures.

3. Low Maintenance: Pin couplings are designed with simplicity in mind, often consisting of only two coupling halves connected by pins. This straightforward construction means fewer components that can wear out or require regular maintenance. Additionally, the flexibility of the pins helps reduce wear on the coupling and connected equipment, leading to longer maintenance intervals.

4. Easy Replacement: In the event of a failure or wear, pin couplings are relatively easy to replace compared to some other coupling types. The simplicity of their design allows for quick disassembly and reassembly, minimizing downtime during maintenance or replacement procedures.

5. Cost-Effective: The combination of low maintenance requirements and reduced downtime translates into cost savings for businesses. With fewer unexpected breakdowns and lower maintenance expenses, the overall cost of ownership for systems employing pin couplings can be more economical.

6. Reliability: Pin couplings are known for their reliability and durability. When properly selected and installed, they can provide long service life without frequent replacements, contributing to stable and consistent system performance.

By minimizing downtime, maintenance efforts, and associated costs, pin couplings are a preferred choice in various industrial applications. However, it is crucial to ensure that the pin coupling is correctly sized and installed, and regular inspections and maintenance are conducted to maximize its benefits and prevent premature failure.

pin coupling

Selecting the Appropriate Pin Coupling for a Specific Application

Choosing the right pin coupling for a specific application involves considering several factors to ensure optimal performance, reliability, and safety. Here are the key steps to select the appropriate pin coupling:

  1. 1. Determine the Application Requirements: Understand the specific requirements of the application, including torque and speed specifications, shaft sizes, and misalignment tolerances. Consider the operating conditions, such as temperature, humidity, and exposure to corrosive substances.
  2. 2. Calculate Torque and Power: Calculate the torque and power requirements of the application to determine the appropriate pin coupling’s torque capacity. Make sure to consider both steady-state and peak torque loads.
  3. 3. Consider Misalignment Tolerance: Evaluate the degree of misalignment expected in the system. Different pin coupling designs offer varying levels of misalignment tolerance. Choose a coupling that can accommodate the expected misalignment without compromising performance.
  4. 4. Select the Pin Coupling Type: Based on the application requirements, choose the appropriate pin coupling type – single pin, double pin, triangular pin, splined pin, or taper pin coupling. Each type offers different torque capacities and misalignment capabilities.
  5. 5. Check Material and Construction: Consider the materials used in the pin coupling’s construction. Common materials include steel, stainless steel, and alloy materials. The material should be suitable for the application’s environmental conditions and corrosion resistance.
  6. 6. Verify Safety Features: Ensure the selected pin coupling has safety features, such as a fail-safe mechanism to protect equipment from overload or shock loads. Safety is crucial to prevent damage to machinery and ensure operator protection.
  7. 7. Consult with Manufacturers or Engineers: If unsure about the best pin coupling for the application, consult with coupling manufacturers or mechanical engineers. They can provide valuable insights and recommendations based on their expertise.

By following these steps, you can select the appropriate pin coupling that matches the specific needs of the application, providing reliable and efficient power transmission while minimizing the risk of downtime and equipment failure.

China Good quality Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore  China Good quality Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore
editor by CX 2024-05-09

China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

Product Description

Cast Iron Elastic Pump Shaft Fcl 90~630 Reduced Transmission Rubber Screw Coupling with flange straight bore

Product Description

 

 

FCL coupling is widely used for its compact designing,easy installation,convenientmaintenance,small size and light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o30′–1o30′

 

Related products:

Production workshop:

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

pin coupling

Can Pin Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, pin couplings can be used in both horizontal and vertical shaft arrangements. These couplings are designed to accommodate angular misalignment, parallel misalignment, and axial movement, making them versatile for various shaft orientations.

In horizontal shaft arrangements, where the shafts are aligned on the same horizontal plane, pin couplings can efficiently transmit torque while allowing for flexibility to accommodate minor misalignments and shaft movements. The pins and flexible elements in the coupling enable angular displacement and radial flexibility, ensuring smooth power transmission even if the shafts are not perfectly aligned.

In vertical shaft arrangements, where the shafts are aligned on a vertical plane, pin couplings can also be used effectively. The coupling design allows for axial movement, which is crucial in vertical applications where the shafts may experience expansion or contraction due to thermal changes or other factors. The flexible nature of pin couplings allows them to handle these axial movements without compromising the coupling’s performance.

Whether in horizontal or vertical arrangements, pin couplings are commonly used in various industrial applications, including pumps, compressors, conveyors, and other rotating machinery. They are known for their simplicity, ease of installation, and ability to provide reliable power transmission while accommodating misalignment and shaft movement.

When using pin couplings in either arrangement, it is essential to ensure proper alignment and regular maintenance to maximize their performance and service life. Additionally, considering factors like torque requirements, operating conditions, and environmental considerations will help in selecting the appropriate pin coupling for a specific application.

pin coupling

Role of Pin Coupling in Reducing Downtime and Maintenance Costs

A pin coupling plays a crucial role in reducing downtime and maintenance costs in various mechanical systems and power transmission applications. Its design and features contribute to improved reliability and ease of maintenance, resulting in enhanced operational efficiency and cost savings. Here’s how pin couplings achieve these benefits:

1. Shock Absorption: Pin couplings are known for their ability to absorb and dampen shocks and vibrations generated during operation. By cushioning the impact of sudden loads or torque spikes, they protect the connected equipment from potential damage, reducing the frequency of unexpected breakdowns and downtime.

2. Misalignment Tolerance: Pin couplings can tolerate a certain degree of misalignment between shafts, such as angular and parallel misalignment. This flexibility allows for easier installation and alignment of equipment, saving time and effort during setup and reducing the need for precise alignment procedures.

3. Low Maintenance: Pin couplings are designed with simplicity in mind, often consisting of only two coupling halves connected by pins. This straightforward construction means fewer components that can wear out or require regular maintenance. Additionally, the flexibility of the pins helps reduce wear on the coupling and connected equipment, leading to longer maintenance intervals.

4. Easy Replacement: In the event of a failure or wear, pin couplings are relatively easy to replace compared to some other coupling types. The simplicity of their design allows for quick disassembly and reassembly, minimizing downtime during maintenance or replacement procedures.

5. Cost-Effective: The combination of low maintenance requirements and reduced downtime translates into cost savings for businesses. With fewer unexpected breakdowns and lower maintenance expenses, the overall cost of ownership for systems employing pin couplings can be more economical.

6. Reliability: Pin couplings are known for their reliability and durability. When properly selected and installed, they can provide long service life without frequent replacements, contributing to stable and consistent system performance.

By minimizing downtime, maintenance efforts, and associated costs, pin couplings are a preferred choice in various industrial applications. However, it is crucial to ensure that the pin coupling is correctly sized and installed, and regular inspections and maintenance are conducted to maximize its benefits and prevent premature failure.

pin coupling

Understanding Pin Couplings and Their Functionality

A pin coupling, also known as a shear pin coupling, is a type of mechanical coupling used to connect two rotating shafts in a mechanical system. It is designed to transmit torque while allowing for a limited amount of angular misalignment between the shafts. The primary function of a pin coupling is to protect the connected equipment from torque overload and prevent damage to the shafts and other components in case of sudden shock or overload.

How a Pin Coupling Works:

A typical pin coupling consists of two hubs, one on each shaft to be connected, and a series of pins that pass through the hubs to join them together. The pins are usually made of a softer material than the hubs, such as brass or aluminum, to act as sacrificial elements. The number and size of the pins depend on the coupling’s torque rating and the required angular misalignment capacity.

When the shafts are misaligned, the pins experience shear stress as they bend under the applied load. In normal operating conditions, the pins remain intact and allow the torque to transfer from one shaft to another. However, in the event of an overload or excessive misalignment, the pins will shear off, preventing the transmission of excessive torque and protecting the connected equipment from damage.

After shearing, the damaged pins can be easily replaced, and the coupling can be put back into service without major repairs to the equipment. This feature makes pin couplings particularly suitable for applications with varying operating conditions and environments where shock loads or sudden overloads may occur.

Advantages of Pin Couplings:

Protection against Overload: The shear pins act as a safety feature, protecting the connected equipment from excessive torque and sudden shocks.

Misalignment Tolerance: Pin couplings can accommodate a limited amount of angular misalignment between the shafts.

Easy Replacement: After shearing, the damaged pins can be quickly replaced, reducing downtime and maintenance costs.

Versatility: Suitable for a wide range of applications, including pumps, compressors, and other industrial machinery.

Cost-Effective: The sacrificial pins are cost-effective components that can be easily replaced, avoiding costly repairs to the main equipment.

Limitations:

– Pin couplings have lower torque capacities compared to some other coupling types, such as gear couplings or rigid couplings.

– The need to replace the shear pins after each failure may lead to frequent maintenance requirements in applications with frequent overloads or misalignments.

In summary, pin couplings offer a reliable and cost-effective solution for torque transmission and protection against overloads in various mechanical systems. Their ability to accommodate misalignment and absorb shock loads makes them suitable for a wide range of industrial applications.

China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore  China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore
editor by CX 2024-04-30

China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

Product Description

Cast Iron Elastic Pump Shaft Fcl 90~630 Reduced Transmission Rubber Screw Coupling with flange straight bore

Product Description

 

 

FCL coupling is widely used for its compact designing,easy installation,convenientmaintenance,small size and light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o30′–1o30′

 

Related products:

Production workshop:

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore

pin coupling

Can Pin Couplings Accommodate High Torque and High-Speed Applications?

Pin couplings are versatile and robust, making them suitable for a wide range of applications, including those involving high torque and high-speed requirements. However, the specific design and construction of the pin coupling will determine its capacity to handle such demanding conditions.

The ability of a pin coupling to accommodate high torque depends on factors such as the material used, the size and number of pins, and the overall design. High-quality pin couplings are often made from strong and durable materials like alloy steel, which allows them to withstand significant torque loads without failure or deformation.

Similarly, the capability of a pin coupling to handle high speeds depends on factors such as the balance of the coupling and the precise manufacturing of the pins and hubs. Properly balanced pin couplings can operate at higher speeds without generating excessive vibration or causing premature wear.

When selecting a pin coupling for high torque and high-speed applications, it is essential to consider the following:

  • Design and Construction: Opt for pin couplings with a robust and well-engineered design to handle the expected torque and speed requirements.
  • Material: Choose pin couplings made from high-quality materials known for their strength and fatigue resistance.
  • Size: Select an appropriate size of pin coupling that can accommodate the torque and speed expected in the application.
  • Manufacturer’s Ratings: Refer to the manufacturer’s specifications and torque-speed curves to ensure the coupling meets the desired performance criteria.

By carefully considering these factors and choosing a pin coupling designed for high torque and high-speed applications, you can ensure reliable and efficient power transmission in demanding industrial settings.

pin coupling

Usage of Pin Couplings in Applications with Varying Operating Temperatures

Pin couplings are versatile and can be used in a wide range of operating conditions, including applications with varying temperatures. The performance of pin couplings at different temperature levels depends on the materials used in their construction and the specific design features. Here’s how pin couplings handle varying operating temperatures:

1. Material Selection: Pin couplings can be manufactured using different materials, including steel, stainless steel, alloy steel, and various heat-treated materials. The choice of material depends on the application requirements and the temperature range the coupling will be subjected to. Some materials are suitable for high-temperature applications, while others are more suitable for low-temperature conditions.

2. Heat Dissipation: The simple and open design of pin couplings allows for efficient heat dissipation. As the coupling operates, any heat generated due to friction or other factors can easily dissipate into the surrounding environment. This helps in maintaining a stable operating temperature and prevents overheating of the coupling and connected equipment.

3. Lubrication: Proper lubrication is essential for the smooth operation of pin couplings, especially in applications with high temperatures. Lubricants help reduce friction and wear between the mating surfaces, ensuring that the coupling functions optimally even in elevated temperature conditions.

4. Thermal Expansion Considerations: Pin couplings must be designed with thermal expansion in mind. When the operating temperature increases, the materials may expand, and the coupling should have sufficient clearance or play to accommodate this expansion without causing binding or interference.

5. Temperature Limits: While pin couplings can handle a wide range of temperatures, there are limits to the extremes they can tolerate. Excessive heat can lead to degradation of the coupling material, premature wear, or reduced performance. It’s essential to choose a pin coupling that is rated for the specific temperature range of the application.

6. Insulation: In certain cases, pin couplings may need additional insulation to protect against extreme temperature variations or to prevent heat transfer to sensitive components nearby. Insulation can be achieved using materials with low thermal conductivity or by incorporating insulating coatings or barriers.

When selecting a pin coupling for an application with varying operating temperatures, it’s crucial to consider the specific temperature range, the type of materials used in the coupling’s construction, and any additional factors that may impact its performance. Following the manufacturer’s guidelines and ensuring proper maintenance will help ensure the pin coupling operates effectively and reliably across the expected temperature range.

pin coupling

Advantages of Using Pin Couplings in Mechanical Systems

Pin couplings, also known as shear pin couplings, offer several advantages when used in mechanical systems. These advantages make them a popular choice for various industrial applications:

  • 1. Overload Protection: Pin couplings are designed to provide overload protection to connected equipment. In case of excessive torque or sudden shock loads, the sacrificial pins will shear off, preventing damage to the shafts and other components.
  • 2. Misalignment Tolerance: Pin couplings can accommodate a limited amount of angular misalignment between the shafts. This helps to compensate for minor misalignments and reduces the stress on the connected equipment.
  • 3. Cost-Effective: The shear pins used in pin couplings are relatively inexpensive compared to other coupling components. In the event of a failure, replacing the damaged pins is a cost-effective solution, avoiding more significant repairs to the main equipment.
  • 4. Easy Replacement: After shearing, the damaged pins can be quickly and easily replaced. This leads to reduced downtime and lower maintenance costs in the long run.
  • 5. Versatility: Pin couplings are suitable for a wide range of applications, including pumps, compressors, fans, and other industrial machinery. Their ability to handle varying operating conditions makes them versatile in different environments.
  • 6. Shock Load Absorption: Pin couplings can absorb and dissipate shock loads effectively. The shear pins act as a buffer, protecting the equipment from sudden impacts or overloads.

Despite their numerous advantages, it is essential to consider the limitations of pin couplings as well. They have lower torque capacities compared to some other coupling types, such as gear couplings or rigid couplings. Additionally, the need to replace shear pins after each failure may lead to more frequent maintenance requirements in applications with frequent overloads or misalignments.

In conclusion, pin couplings provide reliable torque transmission and safety features, making them a valuable component in various mechanical systems. Their ability to protect against overloads and accommodate misalignments makes them a practical choice in a wide range of industrial applications.

China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore  China Standard Cast Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore
editor by CX 2024-04-09

FCL near me shop 90/100/112/125/140/160/180/200/224/250/280/315/355/400/450/560 Screw Coupling with ce certificate top quality low price

Product Description

Product Description

COUPLINGS

HRC FCL Chain coupling GE L NM MH Torque limiter
HRC 70B FCL90 KC4012 GE14 L050 NM50 MH45 TL250-2
HRC 70F FCL100 KC4014 GE19 L070 NM67 MH55 TL250-1
HRC 70H FCL112 KC4016 GE24 L075 NM82 MH65 TL350-2
HRC 90B FCL125 KC5014 GE28 L090 NM97 MH80 TL350-1
HRC 90F FCL140 KC5016 GE38 L095 NM112 MH90 TL500-2
HRC 90H FCL160 KC6018 GE42 L099 NM128 MH115 TL500-1
HRC 110B FCL180 KC6571 GE48 L100 NM148 MH130 TL700-2
HRC 110F FCL200 KC6571 GE55 L110 NM168 MH145 TL700-1
HRC 110H FCL224 KC8018 GE65 L150 NM194 MH175  
HRC 130B FCL250 KC8571 GE75 L190 NM214 MH200  
HRC 130F FCL280 KC8571 GE90 L225      
HRC 130H FCL315 KC1571          
HRC 150B FCL355 KC12018          
HRC 150F FCL400 KC12571          
HRC 150H FCL450            
HRC 180B FCL560            
HRC 180F FCL630            
HRC 180H              
HRC 230B              
HRC 230F              
HRC 230H              
HRC 280B              
HRC 280F              
HRC 280H              

 

Catalogue

Workshop

   Lots of coupling in stock
 

 

FAQ

Q1: Are you trading company or manufacturer ?
A: We are factory.
 

Q2: How CZPT is your delivery time and shipment?
1.Sample CZPT -times: 10-20 days.
2.Production CZPT -times: 30-45 days after order confirmed.

Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. CZPT is CZPT .

 

 

PVC near me shop Saddle Repaired Coupling with Copper Screw with ce certificate top quality low price

Product Description

Descripition
Name:          Building material PVC Pipe CZPT PE repairing coupling

Connector:    cement
Standard
:      DIN80637.
Usage:          Water CZPT
Sample:        Available
Color:         grey

Packing Details

Code Description Size PCS/CTN
800095710 Repaired CZPT 50 20
800095710 63 12
800 0571 00 75 10
800090400 90 7
800090500 110 6
800 0571 00 125 5
800090700 140 5
800 0571 00 160 4
800 0571 00 200 2
80057100 225 2
80057100 250 2
80057100 280 1
80057100 315 1

Our CZPT Steps:                                    
1)Communication: CZPT ers interest in CZPT products , discuss price , check sample quality
2)Negotiation : talking about the sizes, quantity , and other details                                 
3)Ordering: settle down and place order to us                                   
4)Producing: after orders , we start productions at once                                  
5)Packing: while products come out of machines then packed                                  
6)Delivery : everything gets ready ,place the ship, send to dock , to be shipped                              

Factory&company

PVC-U drainage pipe and fittings using high quality raw material and processing auxiliary, is the core product of the company’s matured technology. Compared with cast iron pipe, it has an incomparable CZPT life and it is more corrosion resistance. In the construction, it is light weighted so that is easy in handling, installation and connection. And it is widely used in civil construction, drainage sewage, chemical drainage &sewage, rainwater and other fields.
 

Customized supplier Coupling Rigids with Set Screw with ce certificate top quality low price

Product Description

AT PRECAST,a manufacturer of precast concrete accessories including the CZPT ing Systems and CZPT ing systems Coil and Ferrule Inserts with more than 13 years experience.

 

Other AT lifting system products.


ABOUT US:

As your one-stop source, AT PRECAST,we design, manufacturer and distribute precast concrete accessories including the CZPT ing Systems and CZPT ing systems Coil and Ferrule Inserts. for Concrete and Prefabricated area.

As a leader in developing concrete accessory products, CZPT main goal is to produce products that are safer, CZPT er and more cost efficient.

With more than totally 50 years working experience, CZPT entire staff is dedicated to provide you with the best CZPT er service and competitive prices. Our sales force are able to answer your questions quickly and offer you technical support .

Assurance,

 100% quality manufacturing.
 We guarantee that our products meet your supplied specifications
 Extremely competitive pricing
 Delivery to your port or front door
 4 —- 8 week lead times
 We handle all paperwork
 Partial container orders
 Flexible payment options
 Unique tooling options
 Full range of packaging options from bulk to retail ready
 Complete testing services available

FAQs

1. Where is your location?

We are located in HangZhou City of CZPT and are closed to Airport. It takes 30minuts by car from Liuting Airport CZPT company.

2. How CZPT has the company been established?

AT INDUSTRY was established in 2009. There is 6 years exporting experiences.

3. How many employees do you have?

Administration / sales    4
Engineering / design as CZPT partner     8
Production as CZPT partners 120
Quality assurance / inspection   10

4. Which countries do you export to?

U.S.A, Germany, France, CZPT , UK, Brazil, Middle east of Asia, Thailand,

5. What proportion of your goods are exported?

100% of CZPT production are exported to all over the world.

6. How CZPT does it take to receive samples?

a) Pattern:30-45days after order 
b) Sample:30days after pattern finishing.
c) The lead time is the general production period and does not include the transportation time.

7. New product development process

Got tooling order and sample order with 50% deposit—Hold a meeting with the relation dept. to ensure the developing schedule—Design pattern, fixture and gauge and making them in CZPT house—mold steel buying—Machining—Inspection—Send out the sample with initial inspection report.

8. How CZPT is the manufacturing lead time?

Mass Production: 90days after sample approval by yours.
The lead time is the general production period including the transportation time.
We could make some special production arrangement effectively if CZPT er has urgent need.

9. What basis can we buy goods?

We generally offer CZPT ers prices FOB& CIF (Carriage, Insurance & Freight). The CIF includes the freight cost to your nominated sea port.
We do provide clearance of goods which needs to be handled by a local freight forwarder.
All local costs and taxes are the responsibility of the buyer. We are happy to offer advisement on shipping if required.

10. What are the payment terms?

Payment terms are negotiable and will improve for CZPT term CZPT ers.
During the initial stages, we request 50% of tooling fee in CZPT with the balance payable on acceptance of samples.
Production orders can be negotiable. We prefer 50% deposit and the balance by T/T before sails. But sometimes T/T 30 days after sails would also acceptable.

11. Which currency can we buy in?

We can deal in USD / CZPT currency / GBP.

12. How CZPT does it take to ship goods from CZPT by sea?

It takes about 5 weeks to CZPT pean ports plus 1 week CZPT s clearance, so you can get the container within 6 to 7 weeks. It takes about 2 weeks to east coast and 3 weeks to west coast US ports. All sea goods are shipped from HangZhou Port.

13. How CZPT does it take to ship goods from CZPT by air?

It takes about 7 days to all major destinations.

14. Can we visit the factory to conduct an audit?

Yes, you are welcome to visit CZPT partner factory by prior agreement.

15. How do we retain client confidentiality?

We are happy to sign Confidentiality Agreements with CZPT ers and will honor them.

16. Which languages do we do business in?

Although we do business with many countries around the world, we can only communicate effectively in Chinese English.
All information supplied should therefore be supplied in this form.

17. Is there a minimum volume of business required to conduct international purchasing?

There are no minimum volumes, but the prices of the goods, plus the fixed costs of importing makes it more economical to buy in high volumes. All potential CZPT ers will be assessed on an individual basis to determine if it appears a viable option for all parties to develop a relationship.

18. What type of parts you are specialized in?

Our business contains two areas,
one is for construction precast including lifting system, rigging hardware metal parts.
 
Another is CZPT ized metal business of quality sand castings, investment castings, lost foam castings, hot forgings, cold forgings, stampings, machined parts, injectionmolded plastics parts, etc.

19. Which kind of equipments do you have?

Forging friction press 160Ton, 300Ton, 630Ton, 1200Ton
Casting furnace of 200kg, 500kg,1000kgs, 2000kgs
Press of 63ton, 120tons
CNC Machining center
CNC Vertical Lathe
CNC Lathe center
Boring machine
Drilling machine

 

Cast near me Iron Elastic Pump Shaft FCL 90~630 Reduced Transmission Rubber Screw Pin Coupling with Flange Straight Bore with ce certificate top quality low price

Product Description

Cast Iron Elastic Pump Shaft Fcl 90~630 Reduced Transmission CZPT CZPT CZPT with flange straight bore

 

FCL coupling is widely used for its compact designing,easy installation,convenientmaintenance,small size and light weight.As CZPT as the’relative displacement between shafts is kept within the specified tolerance,the coupling will operate the best function and a CZPT er working life,thus it is greatly demanded in medium and minorpower transmission systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable relative displacement:Radial displacement 0.2-0.6mm ; CZPT el displacemente 0o30′–1o30′

 

Related products:

Production workshop:

Company information:

GF-25X34 near me Plum Type Top Wire Screw Coupling with ce certificate top quality low price

Product Description

GF25x34 Double Step Single Diaphragm Clamp CZPT

Description of GF25x34 Double Step Single Diaphragm Clamp CZPT
>Zero rotation clearance, suitable for forward and reverse rotation
>The colloid is made of polyurethane and has good wear resistance
>Oil resistance and electrical insulation, intermediate elastomer can absorb vibration
>Compensation for radial, angular and axial deviations
>Detachable design, easy to install
>Fastening method of set screw

 

Catalogue of GFT Double Step Single Diaphragm Clamp CZPT

 

 

model parameter common bore diameter d1,d2 ΦD L LF LP F M tightening screw torque
(N.M)
GF-14X22 3,4,5,6,6.35,7,8 14 22 14.3 6.6 3.8 M 3 0.7
GF-20X25 3,4,5,6,6.35,7,8,9,9.525,10,11 20 25 16.7 8.6 4 M 3 0.7
GF-20X30 3,4,5,6,6.35,7,8,9,9.525,10,11 20 30 19.25 8.6 5.3 M 4 1.7
GF-25X30 4,5,6,6.35,7,8,9,9.525,10,11,12,12.7,14,15 25 30 20.82 11.6 5.6 M 4 1.7
GF-25X34 4,5,6,6.35,7,8,9,9.525,10,11,12,12.7,14,15 25 34 22.82 11.6 5.6 M 4 1.7
GF-30X35 5,6,6.35,7,8,9,10,11,12,12.7,14,15,16 30 35 23 11.5 5.75 M 4 1.7
GF-30X40 5,6,6.35,7,8,9,10,11,12,12.7,14,15,16 30 40 25.60 11.5 10 M 4 1.7
GF-40X50 6,8,9,10,11,12,12.7,13,14,15,16,17,18,19,20,22,24 40 50 32.1 14.5 10 M 5 4
GF-40X55 6,8,9,10,11,12,12.7,13,14,15,16,17,18,19,20,22,24 40 55 34.5 14.5 10 M 5 4
GF-40X66 6,8.9,10,11,12,12.7,13,14,15,16,17,18,19,20.22,24 40 66 40 14.5 12.75 M 5 4
GF-55X49 12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 49 32 16.1 13.5 M 6 8.4
GF-55X78 12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32 55 78 46.4 16.1 15.5 M 6 8.4
GF-65X80 14,15,16,17,18,19,20,22,24,25,30,32,35,38,40,42,45 65 80 48.5 17.3 18.1 M 8 10.5
GF-65X90 14,15,16,17,18,19,20,22,24,25,30,32,35,38,40,42,45 65 90 53.5 17.3 18.1 M 8 10.5

 

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GF-14×22 2.5 0.1 1 ±0.2 10000 22 2.0×10-7 High strength aluminum alloy Polyurethane imported from Germany Anodizing treatment 7
GF-20X25 5.0 0.1 1 ±0.2 10000 50 1.1×10-6 13
GF-20X30 5.0 0.1 1 ±0.2 10000 53 1.0×10-6 18
GF-25X30 10 0.1 1 ±0.2 10000 90 5.0×10-6 30
GF-25X34 10 0.1 1 ±0.2 10000 90 5.0X10-6 40
GF-30X35 12.5 0.1 1 ±0.2 10000 123 5.5×10-6 46
GF-30X40 12.5 0.1 1 ±0.2 10000 123 5.5×10-6 55
GF-40X50 17 0.1 1 ±0.2 8000 1100 3.5×10-5 100
GF-40X55 17 0.1 1 ±0.2 8000 1100 3.5×10-5 120
GF-40X66 17 0.1 1 ±0.2 7000 1140 3.8×10-5 145
GF-55X49 45 0.1 1 ±0.2 6500 2200 1.5×10-3 260
GF-55X78 45 0.1 1 ±0.2 6000 2500 1.5×10-3 320
GF-65X80 108 0.1 1 ±0.2 5000 4800 3.6×10-3 560
GF-65X90 108 0.1 1 ±0.2 5500 4500 3.6×10-3 450